The mechanism of assembly of Acanthamoeba myosin-II minifilaments: minifilaments assemble by three successive dimerization steps
نویسندگان
چکیده
We used 90 degrees light scattering, analytical ultracentrifugation, and electron microscopy to deduce that Acanthamoeba myosin-II minifilaments, composed of eight molecules each, assemble by a novel mechanism consisting of three successive dimerization steps rather than by the addition of monomers or parallel dimers to a nucleus. Above 200 mM KCl, Acanthamoeba myosin-II is monomeric. At low ionic strength (less than 100 mM KCl), myosin-II polymerizes into bipolar minifilaments. Between 100 and 200 mM KCl, plots of light scattering vs. myosin concentration all extrapolate to the origin but have slopes which decrease with increasing KCl. This indicates that structures intermediate in size between monomers and full length minifilaments are formed, and that the critical concentrations for assembly of these structures is very low. Analytical ultracentrifugation has confirmed that intermediate structures exist at these salt concentrations, and that they are in rapid equilibrium with each other. We believe these structures represent assembly intermediates and have used equilibrium analytical ultracentrifugation and electron microscopy to identify them. Polymerization begins with the formation of antiparallel dimers, with the two tails overlapping by approximately 15 nm. Two antiparallel dimers then associated with a 15-nm stagger to form an antiparallel tetramer. Finally, two tetramers associate with a 30-nm stagger to form the completed minifilament. At very low ionic strengths, the last step in the assembly mechanism is largely reversed and antiparallel tetramers are the predominant species. Alkaline pH, which can also induce minifilament disassembly, produces the same assembly intermediates as are found for salt induced disassembly.
منابع مشابه
The Mechanism of Assembly ofAcanthamoeba Myosin-II Minifilaments: Minifilaments Assemble by Three Successive Dimedzation Steps
We used 90 ° light scattering, analytical ultracentrifugation, and electron microscopy to deduce that Acanthamoeba myosin-II minifilaments, composed of eight molecules each, assemble by a novel mechanism consisting of three successive dimerization steps rather than by the addition of monomers or parallel dimers to a nucleus. Above 200 mM KCI, Acanthamoeba myosin-II is monomeric. At low ionic st...
متن کاملAcanthamoeba myosin-II minifilaments assemble on a millisecond time scale with rate constants greater than those expected for a diffusion limited reaction.
We have shown previously that Acanthamoeba myosin-II minifilaments assemble by three successive dimerization steps, forming, progressively, monomers, antiparallel dimers, antiparallel tetramers, and finally the full size octameric minifilament (Sinard, J. H., Stafford, W. F., and Pollard, T. D. (1989) J. Cell Biol. 109, 1537-1548). In the current study, we investigate the kinetics of the assemb...
متن کاملAssembly of Acanthamoeba myosin-II minifilaments. Definition of C-terminal residues required to form coiled-coils, dimers, and octamers.
Acanthamoeba myosin-II forms bipolar octamers by three successive steps of dimerization of the C-terminal, coiled-coil tail. In this study, we generated N-terminal and C-terminal truncation constructs and point mutants of the Acanthamoeba myosin-II tail to delineate the structural requirements for assembly of bipolar mini-filaments. By the use of light-scattering, CD spectroscopy, analytical ul...
متن کاملIdentification of functional regions on the tail of Acanthamoeba myosin- II using recombinant fusion proteins. II. Assembly properties of tails with NH2- and COOH-terminal deletions
We used purified fusion proteins containing parts of the Acanthamoeba myosin-II tail to localize those regions of the tail responsible for each of the three steps in the successive dimerization mechanism (Sinard, J. H., W. F. Stafford, and T. D. Pollard. 1989. J. Cell Biol. 107:1537-1547) for Acanthamoeba myosin-II minifiliment assembly. Fusion proteins containing the terminal approximately 90%...
متن کاملThe effect of heavy chain phosphorylation and solution conditions on the assembly of Acanthamoeba myosin-II
At low ionic strength, Acanthamoeba myosin-II polymerizes into bipolar minifilaments, consisting of eight molecules, that scatter about three times as much light as monomers. With this light scattering assay, we show that the critical concentration for assembly in 50-mM KCl is less than 5 nM. Phosphorylation of the myosin heavy chain over the range of 0.7 to 3.7 P per molecule has no effect on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 109 شماره
صفحات -
تاریخ انتشار 1989